Machine learning and connectivity the next challenges for agtech: Microsoft Australia interview

Website Editor

Scientists at the University of Queensland (UQ) have developed a method to extract liquid silicate from waste glass and potentially save tens of millions of tonnes of glass from going to landfill every day.

Waste glass is currently either dumped in landfill or used as a road base, but the new glass processing method developed at UQ has the potential to find new uses for the waste glass, including as a fertiliser to benefit cotton growers. As an ultra-low cost form of extracting plant-available silica, the discovery could improve fertiliser efficiency and bring costs down for cotton farmers.

The research from UQ PhD candidate Rhys Pirie and his supervisor Professor Damien Batstone was co-funded by the Cotton Research and Development Corporation (CRDC) and the Department of Agriculture and Water Resources. Pirie was also the recipient of the ABARES Science and Innovation Award last year for his focus on repurposing organic wastes as fertilisers and soil ameliorants.

“We estimate the process is more than 50 per cent cheaper than conventional ways of producing silicate,” said Pirie. “It requires less energy, raw materials and capital, and that’s before you consider the reduced social and economic costs compared to landfilling material.”

The method developed at UQ also leaves behind minimal waste, with nearly all the glass converted into saleable products. Pirie is now considering ways in which the waste glass could be used to create a low-cost silicon-based additive to increase fertiliser efficiency.

UQ’s commercialisation arm, UniQuest, has filed a patent covering the glass processing technology and is seeking commercial partners.

NEWS
December 18, 2025
Prodoz, a Proudly Australian and family-owned agribusiness, based in Melbourne, is strengthening its positions as national/international leader in advanced crop – science solutions through a growing portfolio of global innovation partners and a distribution footprint supported by all major distributors - includes Nutrien Ag, Elders, Lindsay Rural and Independent Rural stores.
December 18, 2025
Australia’s climate is tougher than ever. Heat spikes, dry periods, salinity, waterlogging and sudden frost events are becoming an everyday part of farmers lives.
December 17, 2025
Trace minerals are required for optimal growth, reproduction, and immunity. Optimising trace mineral status relying solely on oral supplements across a herd may fail because of variation in individual intake and reduced absorption due to antagonism of other ration components and minerals. The use of injectable trace mineral supplements has been associated with positive reproductive outcomes including improved conception rate, increased odds of pregnancy and greater final in calf rate. A study conducted on 2,168 dairy cows, administered injectable trace minerals, four weeks prior to calving and again four weeks prior to the start of mating showed treated animals had a 3.3 per cent greater final in-calf rate, and a reduced time from start of mating to conception, compared to control animals 1 . The Importance of B12 Dr Carl Eden, Technical Services Veterinarian with Boehringer Ingelheim says “Vitamin B12 is sometimes referred to as a ‘super vitamin’ because it is only required in very small amounts but vital to many essential metabolic pathways. However, demand for B12 can vary considerably during the year and we see serum levels of B12 fall at critical times, such as the first few months after calving.” Vitamin B12 contains cobalt, so deficiency in cobalt can lead to deficiency in vitamin B12 because ruminants get most of their B12 as a byproduct of ruminal fermentation where the bacteria in their rumen assemble B12 from cobalt for use by the cow. Sub-optimal trace mineral and vitamin B12 status at calving, mating, and drying off has been shown to negatively impact growth, reproduction, and immunity. Using a trace mineral injectable containing vitamin B12 can improve trace mineral and vitamin B12 status at these critical times. Marks-Min with Vitamin B12 – The Evidence In the largest trace element study to date, Marks-Min Injectable Trace Mineral with Vitamin B12 demonstrated remarkable results when compared to a reference trace mineral injection. “Given the differences between Marks-Min and other products on the market, we wanted to generate a compelling data set to demonstrate how effective it was compared to the pioneer product. We entrusted this work to a third-party research company” says Dr Eden. “We chose farms that were at the top of their game from a reproductive perspective. We made sure that the farms had no evidence of trace element or vitamin B12 deficiencies or excess.” Across all outcomes of interest, Marks-Min demonstrated clear non-inferiority when compared to the reference product. Outcomes measured included submission, pregnancy and conception rates, and six week in-calf rate. Marks-Min demonstrated it is highly suited as an alternative treatment to the reference product. Reference: 1. Hawkins, D., and B. V. S. Franklin. New Zealand Dairy Veterinarians Newsletter 24 (2007): 12-16 Company website: livestockfirst.com.au Company email address: CustomerCare.Australia@boehringer-ingelheim.com Company video: https://vimeo.com/1138807630?fl=pl&fe=cm
December 17, 2025
Find out why the first summer drench can be so important in protecting your flock’s health, plus what to look for in your summer drench of choice.
December 17, 2025
A NSW-based innovator has developed a patent-pending, front-mounted firefighting and utility system for tractors, giving farmers instant, in-cab-controlled fire suppression, water and fuel on hand, and safer solo operations.
December 12, 2025
Barko Security is bringing drone technology to agriculture while building on a decade of security and a lifetime of agricultural know-how.
Show More